| PART VII INTERNET PROTOCOL: FORWARDING IP DATAGRAMS | |--| | | | | Datagram Transmission | |---|--| | • | Host delivers datagrams to directly connected machines | | • | Host sends datagrams that cannot be delivered directly to router | | • | Routers forward datagrams to other routers | | • | Final router delivers datagram directly | Question | | |--|--| | Does a host need to make forwarding choices? | Question | | |--|-----| | Does a host need to make forwarding choice | es? | | Answer: YES! | | | | | | | | | | | | | | ## **Example Host That Must Choose How To Forward Datagrams** path to some path to other destinations Note: host is singly homed! ## Two Broad Cases - Direct delivery - Ultimate destination can be reached over one network - The "last hop" along a path - Also occurs when two communicating hosts both attach to the same physical network - Indirect delivery - Requires intermediary (router) | unsmission of an IP datagram between two machines on
gle physical network does not involve routers. The send
capsulates the datagram in a physical frame, binds th | |--| | stination IP address to a physical hardware address, and the resulting frame directly to the destination. | | | | | ## **Testing Whether A Destination Lies On The Same Physical Network** As The Sender Because the Internet addresses of all machines on a single network include a common network prefix and extracting that prefix requires only a few machine instructions, testing whether a machine can be reached directly is extremely efficient. | • Ge | | |------|--| | | neral paradigm | | _ | Source host sends to first router | | _ | Each router passes datagram to next router | | - | Last router along path delivers datagram to destination host | | • On | ly works if routers cooperate | | | | | | | | General Concept | | | |-----------------|----------------------|---| | interconnec | ted structure. Datag | ternet form a cooperative
rams pass from router to route
n deliver the datagram directly. | | | | | | | | | | | | | | | | | | Decisions based on table lookup Routing tables keep only network portion of addresses (siz proportional to number of networks, not number of hosts) Extremely efficient Lookup Route update | oles keep only network portion of addresses (size | |---|---| | proportional to number of networks, not number of hosts) • Extremely efficient - Lookup | | | – Lookup | al to number of networks, not number of hosts) | | | efficient | | Route update | | | | ıpdate | | | | | | | | | | | | Important Idea | |---|---| | • | Table used to decide how to send datagram known as routing table (also called a forwarding table) | | • | Routing table only stores address of next router along the path | | • | Scheme is known as next-hop forwarding or next-hop routing | ## **Terminology** - Originally - Routing used to refer to passing datagram from router to router - More recently - Purists decided to use forwarding to refer to the process of looking up a route and sending a datagram - But... - Table is usually called a routing table | S_{l} | pecial Cases | | |---|--------------|--| | Default route | | | | Host-specific route | Default Route | |---|--| | • | Special entry in IP routing table | | • | Matches "any" destination address | | • | Only one default permitted | | • | Only selected if no other match in table | Host-Specific Route | |-------------|---| | Entry in ro | uting table | | Matches en | ntire 32-bit value | | | ed to send traffic for a specific host along a th (i.e., can differ from the network route) | | More later | in the course | Summary | |---|---| | • | IP uses routing table to forward datagrams | | • | Routing table | | | Stores pairs of network prefix and next hop | | | Can contain host-specific routes and a default route | | | | | | | | | | | | | | | |